g <span style="color:
| ctetiene) ! sty les™ e
Rl st s g 4 ' “cotor sgat
| - e span style="celer:
Phuis autem</1i> - <
-
Duel ey irdurc/1iy . b
ﬂlﬂn-lmhfn - —
of‘&r\lt ! " b
ul</14y e . I vel eup lr‘lur(/l »
Color: . i>e dolor j .
: n
R sy pont It 0sse molestie conse<, ~. ~. ul> hendrer
Q[y]m 1 ‘)
w or: fo”m]’")

P “"" eun
mlang@sww ~ Ag,h@Clo dAn

‘\

mlangles Generative Al

ava Code Generator

Use Case

@ CloudAngles

About mlangles
Generative Al

mlangles is a comprehensive Al platform designed to
manage the lifecycle of data and models, offering
streamlined solutions for every stage of the process.

Through its Generative Al component, mlangles provides
a suite of tools to navigate efficiently through each phase
of Al project development, encompassing data engineer-
ing, development, deployment, and monitoring. It facili-
tates continuous integration, continuous deployment,
continuous training, continuous monitoring
(CI-CD-CT-CM), enabling enterprises to effectively
manage their Al initiatives.

Java Code Generator

@ CloudAngles

Challenge

Many enterprise applications leverage PL/SQL
stored procedures for database interactions. Howev-
er, as application landscapes evolve and Java
becomes a dominant language, maintaining these
procedures can be cumbersome. Migrating them to
Java offers several advantages.

Solution

This application streamlines the conversion process
of PL/SQL stored procedures into well-structured
Java code. It automates tedious tasks, reducing
development time and effort.

Java Code Generator

angles

Conversion Process

@ CloudAngles

Upload PL/SQL File: The user selects and uploads the
PL/SQL stored procedure file for conversion.

Preprocessing with LLMs: The app may optionally
utilize LLMs to preprocess the PL/SQL code.
This could involve:

-» : LLMs can identify and
correct inconsistencies in code formatting or
naming conventions, ensuring a more uniform
structure for the conversion process.

> : LLMs can analyze
the PL/SQL code to identify dependencies on
other stored procedures, functions, or packag-
es. This information can be used to ensure
proper handling of these dependencies during
conversion.

Parsing and Analysis: The app parses the PL/SQL
code, identifying elements like variables, data types,
SQL statements, control flow, and function calls.

LLM-Assisted Conversion: Here, LLMs play a crucial
role:

> LLMs, trained on vast
amounts of code, can understand the logic and
intent of the PL/SQL code. This understanding
is vital for accurate conversion.

> LLMs can translate PL/SQL
syntax and semantics into equivalent Java
constructs, considering data type mappings,
loops, conditional statements, and database
interactions.

> Generative
Al techniques within the LLMs can be used to
create well-structured and idiomatic Java code,
adhering to common coding practices and
conventions. This promotes readability and
maintainability.

Post-Processing:

> The app
analyzes the generated Java code, identifying

potential errors or areas for improvement. This
may involve suggestions for enhanced error
handling, code optimization, or adherence to
specific coding standards.

Human Review: While LLMs and Generative Al strive
for high accuracy, a human developer may optionally
review the generated code for additional quality assur-
ance and potential manual adjustments.

Output Generation: The final, well-formatted Java code
is presented within the app's interface for review, along
with any suggestions for improvement. A download
option allows the user to save the code for integration
into their application.

Java Code Generator

angles @ CloudAngles

Example
1. Input PL/SQL Code:

register_buyer (

amz_user
email,
fname,
lname,

e

)

register_buyer;

register seller {
email
fname
Iname

company_name

Java Code Generator

@ CloudAngles

buyer

is prime = 8,
prime expiry date =

buyer id = buyer id input;

cancel membership;

DR REPLAC OCED place_order (
order id GER
buyer_id_var

card_id_wvar
address_id_wvar
total price var
curr_price_var
total _qty_var
available units wvar
shipping price_var
is_prime_var

CURSOR products cur IS

product_shoppingcart

2. Ouput Java Code:

rt java.sgl.Connection;

rt java.sql.DriverManager;
.sql.PreparedStatement;
.5q1.SQLException;

= DatabaseOperations {

String URL = "jdbc:your_database url”;
String USER = "your_database username”;
String PASSWORD = "your database password™;

ic void registerBuyer(String email, String fname, String lname, String password)
Connection conn = null;
PreparedStatement pstmtil
PreparedStatement pstmt2

try
conn = DriverManager.getConnection(URL, USER, PASSWORD);
conn.setAutoCommit(false);

String sql1 = "INSERT INTO amz_user VALUES (2, ?, ?, 2,
pstmtl = conn.prepareStatement(sqll);
pstmtl.setString(1l, email);

pstmtl.setString(2, fname);

pstmtl.setString(3, lname);

pstmtl.setString(4, password);

pstmtl.setInt(5, @);

pstmtl.executelUpdate();

String s5q12 = "INSERT INTO buyer VALUES (2, 2, 2?)"
pstmt2 = conn.prepareStatement(sql2);
pstmt2.setString(l, email);

Java Code Generator

id registerSeller(
conn = null;
t pstmtl
t pstmt2

DriverManager.getConnection(URL, USER, PASSWORD);

S5tring sqll = "INSERT INTO amz r
pstmtl = conn.prepareStatement(sqgll);
pstmtl.setString(1l, email);
pstmtl.setstring(2, fname);
pstmtl.setString(3, lname);
pstmtl.setString(4, password);
pstmtl.setInt(5, 1);
pstmitl.executeUpdate();

String sql2 = "INSERT INTO seller
pstmt2 = conn.prepareStatement(sgl
pstmt2.setString(l, email);
pstmt2.setString(2, companyName);
pstmt2.setString(3, url});
pstmt2.setString(4, descriptionvar);
pstmt2.setDouble(5, 2.5);
pstmt2.setInt(6, 8);
pstmt2.executeUpdate();

ption e
printStackTrace();

How it Helps Enterprises

Reduced Development Time: This app automates a significant portion of the conversion process, saving develop-
ers valuable time that can be focused on more complex tasks and application enhancements.

Improved Maintainability: By migrating to Java, code becomes more familiar to a wider pool of developers, simpli-
fying maintenance and future modifications.

Enhanced Integration: Java's broader ecosystem fosters easier integration with other Java-based components
within the application landscape.

Modernization: This conversion aligns your application with current technology trends, potentially improving
performance and facilitating future upgrades.

Reduced Reliance on Proprietary Technologies: Migrating away from PL/SQL can lessen dependence on specific
database platforms, promoting greater portability.

To setup Demo

Info.mlangles@cloudangles.com =)%g

Visit: www.mlangles.ai

Java Code Generator 6

